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Summary —The laminar motion to be examined is two-dimensional Poiseuille flow
betwcen parallel planes; this flow exhibits some of the important features of boundary-
layer instability but has no property analogous to steady boundary-layer growth.

A two-dimensional Tollmien-Schlichting wave of given streamwise waNe-length,

a, is allowed to interact with a three-dimensional wave of the same a. The two-dimens-
ional wave is of the form A (t) exp  (iax), and the three-dimensional wave is represented
by B (t) exp (lax) cos fly, where t is the time, x the streamwise distance and y the cross-
stream distance. The non-linear interaction of the amplitudes A and B is described
together with the various three-dimensional components of flow generated by this inter-
action.

1. INTRODUCTION

IN recent work on the stability of parallel flows, both the second-order

three-dimensional aspects (Lin and Benney"), Benney(2)) and the non-linear

effects on amplitude (Stuartm, Watson(41) have received attention; it

is the object of the present paper to present a unified theory possessing

the essential features of this earlier work, together with some new aspects,

by considering the non-linear interaction of two- and three-dimensional

disturbances. In order to develop the theory as precisely as possible,

attention will be focused mainly on the case of Poiseuille flow between

parallel planes. This flow possesses the mathematical advantage that it

is a purely parallel flow, which does not vary in the stream direction and

has constant local Reynolds number; by comparison with experiment

this is a disadvantage, since boundary-layer flows are not strictly parallel

and one may expect the growth of the boundary layer to play an important

role in the growth and development of disturbances. In the Blasius case

of flow in a zero pressure gradient this effect is mainly one of increase

of local Reynolds number, since the velocity profile remains of the same

shape. By restricting attention to a purely parallel case, therefore, certain

features are omitted but it is to be expected that many important features

of the non-linear equations will be present in this simpler case. However,
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it is to be emphasized that this paper, as with previous work, is a pertur-
bation theory and cannot be expected to have validity for amplitudes

which are too large.

The present work is based on the full equations of motion (the Navier-

Stokes equations) for Reynolds numbers such that the rate of amplifi-

cation or decay of disturbances of linearized theory is sufficiently small.

Disturbances to the basic laminar motion are considered to amplify in

time; this follows linearized theory (e.g. Lin(5)) and the non-linear work

of refs. 1-4, and this feature is retained for mathematical simplicity. How-

eN. er Watson(6) has shown how both linear and non-linear instability

theories may be modified to treat the case of disturbances which grow

in the streamwise direction instead of in time, provided that the rate of

amplification or decay is sufficiently small. Basically his analysis is similar

to that of refs. 3, 4, though it is algebraically more complicated.

X

FIG. 1. Co-ordinate system, Y is spanwise.

It is perhaps permissible to remind the reader of a few of the essential

features of the linearized theory, and of the non-linear developments

which have so far been reported. If u, 1—z2 denotes the basic Poiseuille

flow, where z is the dimensionless distance between the planes at z = +1

(Fig. I), then a three-dimensional velocity fluctuation may be superimposed

on the laminar flow and may be assumed to be proportional to
exp [i(ux+i3y—cict)]. (This is called a three-dimensional Tollmien-Schlichting

wave.) In the above expression x is the streamwise co-ordinate, y the

spanwise co-ordinate and t the time, while  2.- r/a and 2„--r/fl are streamwise
and spanwise wave-lengths respectively. It is normally assumed that
a and fi are real, but that c is complex; the question of stability or instability
is then decided by the imaginary part of c, namely c,. If c, is positive the

Tollmien-Schlichting disturbance increases exponentially in time like

exp (uc,t), and the flow is said to be unstable according to linearized in-

stability theory; if c, is necessarily negative the flow is stable, and if ci
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is zero the flow is neutrally stable. (The modification by Watson in ref.

6 considers a complex, fi zero and the frequency, (Ic, real; stability or

instability is then determined by the sign of ai, the imaginary part of a).

The sign of e, naturally depends on the values of a, [I and R, and this
dependence is illustrated schematically in Fig. 2 for /3 O. The neutral

curve in the a, R plane separates reeions of ci > 0 and e, < O. The exten-
sion of this picture to the case of a three-dimensional neutral surface

(a.fi,R) may be made by means of the work of Squire(7) and the extension

C. < 0

C.>0

Flu. 2. Schematic neutral cune.

of Watson(8). It suffices to say here that a three-dimensional disturbance

(13  0) at a given Reynolds number is equivalent to a two-dimensional

disturbance (fi 0) at a lower Reynolds number but with a higher value

of a. For given values of a,R and c—the eigenvalues—it is possible to

calculate the velocity distributions of the three components of a disturbance.

Information of this kind gives the point of departure for a study of the

non-linear aspects, some of which will now be described.

In the papers of Stuart") and Watson") the question discussed is that

of the possible effects of the non-linear terms on the growth of the ampli-

tude of a two-dimensional disturbance (/ I — 0), and on its frequency

and wave speed. It appears that an important effect is that, at least for

sufficiently small values of ci, the wave disturbance grows exponentially
in time only for small amplitudes; at longer amplitudes it may equilibrate

into an oscillation of a definite, finite amplitude which is independent

of the initial amplitude. (This equilibrating-amplitude property is found

experimentally in the laminar wake of a body, for example; the oscillatory
wake arises from an instability, as shown by Tritton") for a certain Rey-
nolds number range, but remains as a regular oscillation without producing

turbulence). A second possibility is that a disturbance may grow at Rey-
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nolds numbers below the critical, provided its amplitude lies above a thres-

hold value. (This would correspond to the result obtained earlier by Meksyn
and Stuart"°).) These two possibilities are illustrated in Fig. 3, which
shows (a) the case of a disturbance, the square of whose amplitude, I A L2,

tends to an equilibrium finite value as  t H-,D (this is sometimes described

2
1A1

FIG. 3(a). Amplitude growth of two-dimensional oscillation in supercritical

case.

IA12

3(b). Amplitude variation of two-dimensional oscillation in subcritical
case.

as the supercritical case because the Reynolds number lies above the

critical); and (b) a disturbance whose amplitude increases only if it lies

above a threshold value (this is sometimes described as the subcritical
case because the Reynolds number lies below the critical). Detailed

calculations, which are not yet completed, are required to determine

which possibility occurs in a given range of Reynolds number and wave

number.

The non-linear features which control the amplification in the work

described above are (i) the distortion of the mean motion by the Reynolds

stress of the fu:Idarnental (Tolmien-Schlichting) wave, (ii) the generation

of the first harmonic of the fundamental wave, exp[2kt(x—crt)1, where cr
is the real part of  c,  and (iii) the distortion of the fundamental wave. It

can be shown that higher harmonics are of much smaller order of magnitude

(even in the critical layer), and that the mean-motion distortion and the

first harmonic component are of similar order of magnitude. The require-
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ment that the motion be of this type, with the energy disturbance con-




centrated in the fundamental wave and one harmonic, appears to be that

< (ftR) -13, where ci is the imaeinary part of  e  and  (oR )
- "  is the dimen-

sionless thickness of the "critical" layer. In order to calculate the basic

solution of the type described above, it is necessary to go at least to the

third order in amplitude.
The work described by Lin and Benney", 2> in two very important

papers is concerned with the problem of the interaction of a two-dimen-

sional wave disturbance, exp(ia(x---c11)), with a three-dimensional wave

disturbance, exp (io(x—c.,t)) cos fix, to the second order in amplitude.

It will be noticed in these exponential forms that the complex numbers

e,  and c2 are in general different; although they recognize this fact, Lin

and Benney assume for mathematical simplicity that  e, = e,  at a given

Reynolds number, because in Blasius boundary-layer flow the real parts

of  e,  and  c., (e„  and  c„,  the wave speeds) appear to differ at most by about

15%. The difference in  c„  and  c.,,  means that one important component

of the flow generated by the non-linear interaction of the two fundamentals

may have a frequency of about 1/6th or ',/,th of the fundamental frequencies;

we shall return to a discussion of this in Section 4.

Lin and Benney point out that the interaction of the two fundamentals

produced second-order effect of several kinds, including the generation

of harmonics of the fundamental modes, the modification of the original

mean motion and (with the approximation  e, e.,)  the generation of
new harmonic components of flow which are non-periodic in time. It is

with the calculation of the latter flows that Benney's paper is mainly

concerned. There are two such flows; the first is proportional to cos 2fiy

(except for the spanwise velocity, which is proportional to sin 2fiy), is

independent of x, and is exactly non-periodic in  t  even when  e,

The second flow is non-periodic because of the approximation  e,

and is proportional to cos iv (except for the spanwise velocity, which
is proportional to sin fiy). The important feature of these harmonic flow

components, as Benney's analysis shows, is that they lead to a spanwise

transfer of enerey, a feature which has been observed experimentally by
Klebanoff and Tidstromffi• '2). Both the cos 2fiy and cos  f3y  flows possess

streamwise vorticity, and Lin and Benney argue that the latter, which

has the same spanwise wave-length as the three-dimensional fundamental,

is likely to be the more important in experiment. The argument for this

is that the wave is initially two-dimensional, so that the three-dimensional
fundamental is smaller in amplitude than the two-dimensional one; con-

sequently the cos Jy term, which arises from a direct interaction of the
two fundamentals, is larger than the cos 2fly term, which arises as a har-

monic of the three-dimensional (and smaller) fundamental alone.
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In Sections 2 and 3 of this paper an analysis will be described which

incorporates both the non-linear effects on the amplitudeom, and the

three-dimensional effects( "2), in the solution of the Navier-Stokes equa-

tions, while a discussion of the nature of the solution appears in Section 4.

2. FOURIER ANALYSIS OF THE EQUATIONS OF MOTION

We consider the flow between two parallel planes, set at z = +1, and

further we let x denote the co-ordinate in the flow direction and y the

transverse co-ordinate (see Fig. 1). Velocity components corresponding

to x, y, z are denoted by u, v, w, while p denotes pressure and t the time.

Quantities have been made dimensionless with a reference length h, the

half-distance between the planes, a reference speed U0, the maximum

speed in the basic laminar flow, a reference time h:U„, and a reference

pressure gig, n being the density. The Reynolds number is R = U„h v.
The Navier-Stokes and continuity equations for incompressible flow

may be written as

du , du , du dp 1
—u

,

	

v w
V2u

at dx dy dz ax  -7  R

av , av av dv dp 1
vat

-

• ax ay az dy ' R

dw
-Hudw	 v w  =

dw aw dp 1
ôi dx dy az dz R

	

au av
dx ay az

The basic flow whose stability we wish to examine is given by

u — 1 z2, v = = 0, p = —2x/R (2.5)

As mentioned in the introduction, a finite-amplitude analysis for the

growth of a single two-dimensional disturbance has been given else-

where(3 .4). Here we wish to follow these two papers in considering the tem-

poral growth of disturbances, but we wish to extend that work to consider

the interaction of a two-dimensional disturbance with a three-dimensional

one. The former disturbance has a wave-length 2:(a (wave number n)

in the x-direction while the latter is assumed to have the same wave num-

ber, a, in the x-direction, with a wave number /1 in the y-direction. We

also consider the waves to propagate in the x-direction, but to have zero

wave velocity in the y-direction; the three-dimensional disturbance is

therefore a standing wave as far as the v-direction is concerned. (It is

possible with a similar analysis to consider the case of a three-dimensional

wave which does have a wave velocity in the y-direction; however we
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shall not pursue this point, here, but some relevant differences will be
noted later. It is also possible to consider two disturbances whose x-wise
wave numbers are different.)

We assume the velocity components u, y, w to be Fourier analysable
in the form

U U10 eiœX î io ex ± (1411el OEX e-') cos  13.),+u20e2l""--Fit,„e--lia-‘
-H(u„ehixx El22 e-- 2ilx)cos 213y÷u02 cos  213y+(tin e2tzx 1121e-

2iz ) cosi3y


-.- 140,cos fly (2.6)

= (y„ e'ax e--12x ) sin Ay-I-(v22 e e 2fly+v02 sin  213y

	

(j,21  e hicxx ir,21 ) sin fly+... (2.7)

w = wioe' 12x-i-(woe± e-1xx)cos fly+ (w20 eiax+ 171'20e2iyx)-
2[1 y + w o, cos 2/3.1,+(w.,1e2i.x+fi,2, e...2i5x)cos  fly

	

- 7- Woi cos fly+ ...  (2.8)

P = x73(t) 1-7i-F(Pweiœx- +fin e cos
e --21ax+ (P22 e2i7x ÷i022 c 212x)COS2/3y --Fp02 cos 2/3y

	

(P21 e21' -HI)21 e -2i2x)cos  t3y±poi cos fly (2.9)

In these expressions the tilde (—) denotes a complex conjugate, the first
suffix refers to the harmonic of the streamwise wave number a, and the
second suffix refers to the harmonic of the spanwise wave number fi. The
function ù is the mean velocity in the x-direction, the average being taken
with respect to x and j'. All the  u, y, w  and  p  quantities except j(t) are
function of both and t. (In the case of a wave propagating in the y-di-
rection, there would be a mean velocity, i , in this direction, generated
by a Reynolds stress).

It can be seen that the two-dimensional basic disturbances is repre-
sented by terms of the form  ei2x  and  x ,  while the three-dimensional
basic disturbance is represented by terms of the form eiœX cos /3.), and e- i2x

cos  13y.  The other terms specifically included in formulae (2.6) to (2.9)
arise from direct quadratic interaction between the different components
of these basic disturbances. Higher harmonics will be discussed in Section
4, when we shall find that they do not affect the basic non-linear problem.
Of the terms in the expression for the pressure,  p(t)  represents the imposed
longitudinal pressure gradient, while 73(z, t)  represents the pressure varia-
tion in the 1-direction due to the effects of Reynolds stresses.

If we substitute (2.6) to (2.9) in equations (2.1) to (2.4), separate out
similar harmonic components, and eliminate the pressure terms in all
except the mean equations, we obtain the following partial differential
equations, where it should be noted that the prime and the operator D are
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used interchangeably to denote differentiation with respect to  z.  It is
convenient first to define the operators

L(u , f3) (i4—
a at  (D-  /32)1-4"+

(D2 a 2 /32 \ 2

	

) (2.10)
aR

M(a, 13) 	
aR 'a  di
	 (

D2
a2 /32)

The symbols U, V, W (with subscripts and bars) are described later, and
then we have

Mean terms

at

W

elax terms

	

L(a, 0)wio =—ia

i ,

	

uio =ft 11'10

e'Œxcos fly, e1Œxsin  fly  terms

,
L(a, 13)w, = Un—— V„— — (a2 - f32)W„

a

.13
M (a, 13)(flu11+ iar11) it'll + vii

kiii 11 -f-t3v11+1v;1

e21" terms


L (2a, 0)1100 = W20

U20-- w„
2u

e21x cos 2fly, el'Œxsin 2fly terms

,,,,2i202\ r„.
L (2a ,213) 11'22 — 22 r 22 ka----Hii-)rv22a

M(2a,2/3)(flu22+ iav22) = woo a' + U22;1; V22

	

2a—2a

11.2'2 = 0

cos 2fly, sin 2fly terms

[iaL(u, 2/3)]2=0 iro2 = 2/3 V(;2÷ 4/32W00 


[ia M(a,211)]:=-0u02 = -11'02 UO2

2131'02+ wo'2= 0

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)


(2.23)


(2.24)

(2.11)
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(vii) e2ulx cos Py, Oi l' sin Py terms

L(2a, /1)11.2, = U
2

Oa'  +CM  woi2aa

129

(2.25)

M(2a,  fl)(flu„+2iuv.21) = 21- ,,
2a—

(2.26)

2iau21H-  fivnw2'10 (2.27)

( iii) cos Py, sin  Py  terms

[iaL(a,13) ]Œ-olvot = 131741 H/32W01 (2.28)

[iuM(a ou0--- WO1 U01 (2.29)

/91'01+11.0t= 0 (2.30)

	

In all these differential equations the symbols  U, U„,„, V„,„,  W„,„

(m, n  integral) represent the terms which arise from non-linear interactions.

Representative ones are

U --= w1074;0+1-viou;o+-1 (1. 111741 H-fi'11141—fiv11i-i11---i3i'11 u11)+ higher-order

terms (2.31)

U1 -  kit/0110'  ?daU011-61 41v 11 u01 Vri."11u01

?,i-Ir01/111 171'10/40+:1,w111461 i-v111421+ W201710 W211:41

	

+.12w„,u;1-1-higher-order  terms (2.32)

Uo„  ia40+:1.2k1141—:',-13v11uii+iv 10u10 - +higher-order terms (2.33)

The higher-order terms will be discussed in Section 4, and will be shown

to be negligible to the order of magnitude we wish to consider.

The functions  U  and IV are the well-known Reynolds stresses; the
first equation (2.12) shows that the mean velocity,  ii,  is dependent on

U,  while the second equation (2.12) gives the pressure gradient required

to balance the Reynolds stress in the f-direction. Each of the (viii) sets

of equations given above is dependent on the others through the non-

linear interaction functions (U,„„ etc.), which represent the interdepend-

ence of the many harmonic components of oscillation. Thus the eight

sets of equations must be solved jointly.

The velocity components y„ and v2„ are identically zero, as are the

corresponding interaction functions  V„  and V20, because the flow is a stand-

ing wave in the y-direction. If the flow were to possess a wave velocity

in the y-direction, the velocities vio and r.,„ would be non-zero.

Before concluding this section we give a preliminary discussion of the

physical meaning to be attached to each of the eight groups of equations

given above. Group (i) represents the distorted mean motion in the

9
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x-direction, averaged with respect to the directions x and y. Groups (vi)

and (viii) represent other harmonic components which do not vary with

x, but w hose velocities are periodic in y. These are generated as a har-

monic of the three-dimensional wave alone, and by the interaction between

the two waves, respectively. Groups (ii) and (iii) represent, respectively,

the two-dimensional and three-dimensional basic disturbances, each

being modified (from the form of linearized theory) by non-linear inter-

actions. Groups (iv), (v) and (vii) represent harmonic of the basic oscilla-

tory disturbances, arising from the two-dimensional oscillation (iv), from

the three-dimensional oscillation (v), and from the interaction of the

oscillations (vii). From the experimental point of view the parts (i) (vi)

and (viii), which are not periodic in x, are particularly significant.

3. METHOD OF SOLUTION

Watson(u has studied the problem posed by differential equations

analogous to those of the previous section, for the case of a single two-

dimensional disturbances, and has shown how the solution may be ex-

panded in a certain type of series. Here we wish to generalize Watson's

work to the case of two interacting disturbances, but we shall study

only terms up to third order in amplitude in the expansion instead of

the whole series. (This amounts to considering disturbances whose ampli-

fication rates are sufficiently small.).

An essentially non-linear feature shown by the work of Stuart") and

Watson") is the divergence, at finite amplitudes, from an exponential

rate of growth. On this point, the present work differs from that of Lin")

and Benney"), where the rate of growth is always exponential with time

(except for the special case when the time rates of growth of the basic

sturbanees ei7x and e" cos i-y—are identically zero).

We look for a solution of equations (2.12) to (2.30) in the form

	

111 21.11) Bl2f12)

	

where i,1—z-2 is the laminar undisturbed flow, together with

(3.1)

11'11)— A(Vio H 2  1P1101) B "') i-171B21/4103) (3.2)




A(010+ 14 HOW I- I BI2012)




(3.3)




B(Vo-H 211"11.1) -HIB H'11.12) ..-) -H114244113) (3.4)

1111 B(4)11-Hi ' O(11) ;T-IB:211)1112) H-• A2 40) (3.5)

1.11 B(Z11+  A  2 Z(P) BHZ(P)• H -)-HE A2Z(P) (3.6)

1120— JON»+




(3.7)
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w„ --Bhg) (3.8)

11.22 = (3.9)

u22 - - B2022 •• (3.10)

122 -- B2722 H• (3.11)

wo2 WO2 • •• (3.12)

1102 — BI2002  -••• (3.13)

1.02 !Bi2702 •-• (3.14)

w21 A B2r2i (3.15)

U21  AB4021i--  (3.16)

121 == AB721  1 ... (3.17)

14'01 A hyol (3.18)

	

AbOol  --4 B01 (3.19)

voi= Ah701 ;6u  (3.20)


It will be seen that the two fundamentals are given to third order in ampli-
tude, and the other components only to second order. The functions  A(t)

and  B(t)  are assumed to be given by the relations

—dA =  A(a m'B'2 I ) ' a(34112-- • • •  (3.21)
dt 0 • " • 1

	 • -  B(b0-1,- !A;2.  h(2)B2_;_ • • .)  bi3)AA  • •dB

dt (3.22)

which render (3.1)--(3.20) consistent with (2.12)—(2.30).
In formulae (3.1) to (3.20) the functions  1p,  and z are dependent on
z  alone. On the other hand  A  and  B  are functions of  t  alone. The con-
stants ail),  ar,  a?), N1), br, br are constants to be determined. The
constants a„ and  b,  arise from linearized theory and may be written

an= b„— —fiw,  (3.23)

(lf the non-linear terms in (3.21) and (3.22) are ignored,  A  and  B  are pro-
portional to exp(-kw,t) and exp(-iac.,t) respectively, the time-dependent
behaviour of linearized theory).

We must now consider the dependence of the various interaction functions

U, V, W  on  A  and  B;  in this discussion it is convenient to refer to func-




tions by the double suffixes; for examples "21" refers to the coefficient

of eSi2x cos fiy,  the first suffix referring to the wave number in the x-di-




rection, and the second suffix to the wave number in the y-direction. It

appears that the mean functions  (U, W)  contain terms -proportional to


and to 1B,2; the 10-components contain terms proportional to  Affe,

9*
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A B .2  and A132.These and other properties are shown in the table imme-

diately below.

TABLE

Components U, V,  W Time-dependence

U,  W Al 2,1132

10 A!Aj 2, AB 2, AB 2
11 B A j2, B,B 12, fiA 2
20  A', B 2
22 B2
02 ' B 2
1 1  AB

01  Ail, AB

The U. V. W  functions for the mean (U.  W), 02 and 01 cases are real; in

the 01 case the (1-dependent) coefficients of /1/3 and AB are complex

conjugates. The  A, B dependencies given in the above table refer, of course,

only to the most important terms, hieher powers of  A  and B not being

given explicity; however the terms given are the lowest-order interaction

terms which need to be considered.

We now write

U = 1.WU"). LBHU(2)

(110 - AI/11211W A13!2H- A -B2U2)

U11 — B;Ai2U11) B1BVU -H-BA2UIT

U211— A2ugt ;-B2u0

U22 B211(2')

B .2 U

U. ABUg"

U„, = AhUg)-- A-Bi71"

with similar definitions for the V and W functions. The

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

functions  U,(„r„

depend only an  z.

The set of partial differential equations (2.12) to (2.30) can now be

reduced to a set of ordinary differential equations by separating coefficients

of A. B, ;11;2,  etc. Firstly we define

L(ct •) (t7 1— c)( D.2 — — i32) — (D2 u2 (3.32)

M(a, c) c)
tiR

(3.33)

c) —iac—  RI(D2-132) (3.34)
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Substituting (3.1) to (3.23) into (2.12) to (2.30) using (3.24) to (3.31). and
separating as described above, we obtain the following sets of ordinary
differential equations, where the orders of A and B are indicated on the

left-hand side:

Mean terms

0 — pu”

Itc10(1)

2ac2ifi(2) : N) p(12) R1,fr"

N' here » is assumed to be expandable in the form

p p (o)_,Epoi, A:2 p(12rB2

(3.35)


(3.36)


(3.37)

(3.38)

It is necessary to specify an overall condition on the mean motion, such
as constant pressure gradient or constant mass flux; the former condition

yields p(") p-U2) 0 and the latter condition yields appropriate values

for p0" and Pr2), where p(o) is specified by the basic laminar flow.

eilx terms

A A  2: i

A ,B

f L(o, 0,

L(u, 0,

iacy,V)-!

itt oiv)

I L(u, 0, c1)v141
A: t1(19-101/).0 = 0

= Ugy -

'pi()

(11)'

10—

——

f(2)"
--,/,(11-02) '

0

1-((1)
-

(iar
a

ia
J (1))(D2—

(3.39)


(3.40)

u2)r,„

(3.41)


(3.42)

1(2))(D2

(3.43)


(3.44)

24
L (u 0, c,---82: • --111;,)'- fu l1.2)-

i01'03)g' (1.3)'

03)

- -(D2—a2)y1„ (3.45)

(3.46)

ei" cos fJ ,
e'" sin /3y terms

L(u , c„,)tp„ = 0 (3.47)

B: c2)(411H-iu70) (3.48)

ia011 o (3.49)
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L (a, 13, co-1-2ic11)zpV11)-

it3rt(11' _

""' 1111
ft

—(a 2a jr-/32) 


(

ih (1)  
1 fi 1))(D2 —a2— fi2)1 ..f(l)1Pit

(3.50)

M(a, 13, c2-H2ic1,)(134411.)_,i_iazi1) _ 11) ja) y(1) 43. ,„( n)4,
a n  a yn

	 _ftl ) iax„)
a

it3
-(-1- Viifin'

/32,111)_i_ 0

	

L(a, /3, c24-2ic21)41-2) — 1/(2)' (124_132)cl)
a

ibi2) [
( 2))  ( D2 2 2 _ 182)1pii

(3.53)

_
M(a, (3, c24-2ic21)(/34412)+iaA.12)) — '1412)u; -U11.)—vif)

et a

+ 	

(ib(2)
1 f 12))(thhi, iaui1)

it3
- — V11f (3.54)

i(11/41,2) fiziP) V,2)' = 0 (3.55)

13,42 :

L(a,

M (a , (3 ,c 2 — 2c,-I-2c1)(( 3 OW)

, 0i13)+13ZI3)+ =

--- —1/11)' — R2 w(a)
a a r-  f

ib,(3) (D2a2/32),p (3.56)
a

it3it3
iaa) ) = H- UW,)

a

ibi3)
(13011 ia7n)

(3.57)


(3.58 )

V312 :

(3.51)


(3.52)
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(iv) e'x terms

L(2a ,  0,  c1)11,!2°,1) = ti
A2 :

2iu00)-H 0

B2:
1 2iago2)+11,2112)'  0

L(2ct, 0,  c2)1p0) us2r-2ia Wg)

(y) e2i2xcos 213 y , e2""c sin 2fly terms

B2:1

L(2a, 2/3, c2)1p.2.0 - o),14, -
-

M(2a, 2/3, e2)(i3022-1-kg22)[

1422 -4722V'22 -

ill , 2i
a

(a2 + /32)  if (2(2)Vg - a

	

i(ji.  1P2211;21/3a Ug-  :12V !Z

cos 2/3y, sin 2/1y terms

r(D2- 4/32)N(2/3, 2ic21)y02 = 2fl V r +  4/32111,1

!B2: N(2/3, 2ic2i)4002 U2)- 'Po21/;

2 /3702+ 1P,;2

e2i2x cos /3y, e2iŒx sin fly terms

L(2a , /3, !2(c1-i c2))1P21 = U2)'- -  173- Vaw- - (4a2+/32)11,17) (3.69)
2a  21 2a

AB:
M(11 YcH c2)7134021-1- kr721) —2a (V2I  u/  + UV) - V2(?) (3.70)

2ia021 -1-13y21 1,1):21 = 0 (3.71)

cos fly,sin fly terms

(D2-  t32)N(/1, ci- l'2)roi = f) V r -f-  P2 WO
AB : N(fl , c1- 165I

kol.-- 'POi = 0

'(.-_2., , 01 --  U0 131)---?Poi u;

(3.72)

(3.73)


(3.74)


The boundary conditions which wc wish to apply on the differential


equations described above are that the velocity components shall vanish

at z , .- + 1; and that the two fundamentals shall be antisymmetrical about

z - 0. It then follows that wi„ and wn will be even functions of z, and


un and yil odd functions of z. Further considerations show that  ii, 1.120,
11.2-2, l'20, 1109, V02 7 U21 , l' 2 1 5 un and v„, are to be even, and 1100, 1122 ,  11.02 1

ll'n , Ii.„ odd functions of z. Thus the boundary conditions are

(3.59)


(3.60)

(3.61)


(3.62)

(3.63)


(3.64)


(3.65)

(3.66)


(3.67)


(3.68)

- - .1-12)


1P1'n — 02,1
= iPo,,

- 7

7,, - 00% - Zon

b-z,„

0

- -
- 0

(3.75)


(3.76)

at z --

at —
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In (3.75) 4),y denote any function occurring in equations (3.39) to
(3.74), and in (3.76) Yin, 1112n etc. also refer to any the functions in (3.39)
to (3.74).

For the purposes of the present paper it is unnecessary to quote the
precise algebraic forms of the interaction function U14), Ug),etc. It suffices
to say that the interaction functions which arise in the sets of equations
(i) and (iv) to (viii) depend only on the functions w,10, Co, VII, On, zi
associated with the two fundamental Tollmien-Schlichting wave distur-
bances. On the other hand the interaction functions arising in equations
(3.41) to (3.46) and (3.50) to (3.58)—the equations for the third-order
modifications of the fundamental waves—involve Vio, OH, /PH, On • Zil
together with the solutions to equations (3.59) to (3.74). With the above
knom ledge it is possible to describe the sequence in which calculations
can be done.

Procedure of Calculation

Evaluate the properties of the fundamental waves for given values
of a, j3 and R (equations (3.39), (3.40), (3.47)–(3.49)). This leads to the
determination of c1, c2, Vie, 010, 1Pn, and y„ (see, for example, Lin's

book(5) for a description of linearized theory).

Solve equations (3.59) to (3.74), with appropriate boundary con-
ditions, for the second-order (harmonic) components generated by inter-
action and self-interaction of the two fundamentals; it is assumed that,
for example in (3.69), 2a,ft, ?z(c, R do not form eigenvalues. with

similar assumptions in the other equations. Benney's paper(2) is concerned
with the evaluation of functions of this kind (for a mixing-region . elocity
profile at large Reynolds number).

Solve equation (3.41) for wgn and ain, equation (3.43) for
and ai2), equation (3.45) for zig,3) and a?), equation (3.50) for 01 ' and

equation (3.53) for yip) and IT) and equation (3.56) for trii3) and
bi3). Succeding equations to those just nominated may then be used to
calculate the 4)and y functions associated with the Ip's. References 3 and
4 are concerned with the formulation of the two-dimensional problem
which, in the present notation, is the calculation of wil,n and ain. A word
of explanation about the mathematics involved in these calculations,
especially with reference to the values of ain, a?), bi2), hr. is
perhaps appropriate here.

A typical case is afforded by equation (3.41)

ia(1)

	

L(a, 0, c1-H2ic11)1p = g g,
a

(3.77)

where represents y41,1) and g(:-.) and g1(f) are those parts of the rig.ht-
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hand side of (3.41) which are respectively independent of, and propor-

tional to, ail). The boundary conditions are, from (3.75) and (3.76)

1/, — = 0 at z -- 1; 1,/,' y"= O at z 0 (3.78)

It can be shown that the essential feature of this problem is that the left-

hand side of (3.77) differs only by a term of order c1 from equation (3.39),

while the boundary conditions are the same. Watson") has shown that,

consequently, the dominant part of the solution of (3.77) is proportional

to cL1. In spite of this we wish the solution to be regular in c„ as c„ tends

to zero (as the neutral curve of Fig. 2 is approached), and Watson")
and Stuart"' have shown that, in order to ensure this, ain must take

a definite value as c1; —>0.

In order to calculate this value we need to define the solution, W, N‘hich

satisfies the equation adjoint to (3.39),

L(a, 0 , c1)W ---(12)W+ tif
uR

(D2_  a2)2(p 0 (3.79)

subject to the adjoint boundary conditions,

0 at z — 1; W' T'" = 0 at z = 0 (3.80)

(Incidentally (3.79) is the vorticity equation for the exp(iux) fundamental,

but (3.80) are not appropriate boundary conditions on vorticity.) It may be

checked that if lPlÙ— VlOg is a general solution of (3.39), VI g = (D2 (12)1P,"

is a general solution of (3.79). It can be shown") that the value of ain

may be obtained by multiplying (3.77) by W, integratin2 by parts and

omitting a term of order eli; then we have

ia!i)
— PgdzI  .1. dz (3.81)

This procedure of calculation yields ail) to order 1, the error being of

order c1,. (The case when the denominator of (3.81) vanishes requires

special treatment see ref. 4.)

The method described above for the calculation of ail), equation (3.79

may be applied also to the calculation of ar, bp) and bi2) by ensuring,

that the solution of (3.43) is regular as c,i tends to zero, that the solution

of (3.50) is regular as c1, tends to zero, and that the solution of (3.53)

is regular as e tends to zero. On the other hand, in the case of equation

(3.45). the left-hand side does not differ by a small amount from the left-hand

side of (3.39) because, for a finite value of the spanwise wave number

(fi), c„ and c2, may differ by as much as 15 per cent. Thus the left-hand

side of (3.45) does not differ by a small amount from (3.39). Consequently

a13)may have any value and, in particular, we may choose it to be zero

for even then the solution is regular. Similarly, from equation (3.56), we
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may choose hP) to be zero. (It needs to be mentioned, however, that if

we considered LI-  0 the above conclusion that  al3)  and bi3) may be

chosen to be zero identically would not be valid, for in that case  c,:

an araument similar to that for ail) would then yield finite values for

ai3) and br.)

It will be seen shortly that c„ and  c.,1  are required to be sufficiently

small for the method of this paper to be valid. A glance at Figs. 3 and 4 of

Watson's paper(8) shows that it is possible, for given a and R, to choose

a finite value of /1 to lie within a range such that  c„  is small when c1; is
small. But, as mentioned above, the values of c„ and  c.,,  may differ

noticeably.

4. DISCUSSION

The conclusion that (43) 613) 0 for finite values of  /-3  (end of

Section 3) means that the amplitude equations (3.21) and (3.22) reduce to

dA

dt
A(--iac,-Hal"!A  a12) • • .)

dB 

hiu'A  ;2 1,12)1/32-:_ (4.2)

dt

where  a„  and ho have the values (3.23). By multiplying (4.1) by A- and

adding its complex conjugate, together with related operations on (4.2),

we have

dIAI2
- = 2Al2(ac h

a•-i o)!A 12 a(2) rB12
dt lr I • (4.3)

d'B 2
= 2'8  2(ac ha) A  2 6(2) B  2 - • • .)

dt lr lr

These equations define the squares of the moduli of the amplitudes  A

and  B;  it is possible to write down equations for  A-/A  and  B„lfi,  and these

latter equations can be evaluated once !A ,2  and !.8,2 have been calculated

(for a special case  B(t)  0, see refs. 3, 4).

The possible time-independent states of equilibrium of (4.3) and (4.4) are

!A.2  0 '8'2 = 0 (4.5)

!A  2 - - "en ,B  2 __ 0 (4.6)
lr

otC.,1
2 0 2 - (4.7)

ei(c„b12,.)-  c.,;(42,)) B,  —ca h(i))(iv) !Al2 (4.8)b(i),„,(2) na)h(2) - aVr)hir21lr "lr "lr lr

(4.1)

(4.4)



Non-linear Effects in the Stability of Parallel Flows 139

We shall assume that al!) and Mir),as calculated by formula (3.81), have

non-zero values as  e„  tends to zero, and that  42,)  and 1.)0) have non-zero
values as  c.,1—>O. It will be seen that  -.A  .2and - B  2 are of order  (ac11--bc.,1),

where a and  b  are constants, provided (in case (iv)) that the denominator
of (4.8) is not small; each term in equations (4.3) and (4.4) is of' order

e. c„c.,i  or el. Higher-order terms (of order e , etc.) have been neg-

lected; they would arise if terms of higher order were included in equa-

tions (3.1) to (3.20), and if higher harmonics were considered. If desired,

such effects may be calculated subsequently to the calculation described
here, and will lead to the appropriate terms of order !A etc. in (4.3)

and (4.4). This has been done by Watson") in the two-dimensional case.
It should be noted that equations (4.3) and (4.4) are sufficient to determine

.2  and B  2  to order e11 and  c91 ,  and that the calculation of al" etc.,

to order 1 is sufficiently accurate.

Any state of these four is meaningful only if both 1,412 and 1,812 are

positive. Solution (i) is, of course, the basic laminar motion, which is
unstable if either e11 or c, is positive or if both are positive. Solution

ii) has been studied in part in refs. 3 and 4, where it is shown that the
s flution for  B(t) 0  is

ue . Ce22c,"
Ifr2 = (4.9)

- Ce"re'it

where  C  is an arbitrary real constant. If al!) < 0 an equilibrium state
exists for e11 > 0, and then (4.9) yields (4.6) as  t c,  and the result

of linearized theory as  t  (Fig. 3a). On the other hand al!) > 0

yields an equilibrium for e11 < 0, and then (4.9) yields (4.6) as  t

(Fig. 3b). The importance of the latter result is that instability would

only exist if the amplitude lay above a threshold value (which would be
a state of unstable equilibrium); this would be in accordance with the
work described in ref. 10. Calculations of ali) have not yet been completed

to determine which of thc two types of behaviour (Fig. 3a, b) occurs in

a given range of Reynolds number and wave number. Solution (iii) is
similar to solution (ii) in type, but represents a three-dimensional oscil-

lation.

Solution (iv) is more novel and represents (provided both of (4.8) are
positive) an equilibrium state consisting of a combination of the two-di-

mensional oscillation with the three-dimensional one.

It is felt that an important feature of an analysis of the type described

in this paper lies in the determination of the relative stability (see, for

example. Stoker") of the three possible equilibria, (4.6)-(4.8); if we have
two competing disturbances, we may determine which has a tendency
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to dominate. It is to be emphasized that the term "relative stability- is

used to mean stability within the framework of (4.3) and (4.4), but not
with respect to all hydrodynamic disturbances. In the light of the experi-
mental facts that three-dimensional oscillations are often prevalent, it
is possible that (4.7) or (4.8), rather than (4.6), is the appropriate solution
at many Reynolds numbers. Once the constants a»), a1(2), b1(", b1(') have
been evaluated, a study of equations (4.3) and (4.4) will yield information
as to whether this is so. A similar analysis could be done for two distur-
bances, which are both three-dimensional but have different wave numbers.

As in the case of the two-dimensional solution described in refs. 3 and 4,
it seems likely that for convergence of the series in this paper c11and co,
must be small compared with (aR)-':3, to ensure uniform convergence
in the region of the critical layer.

As mentioned in the introduction the analysis of Benney(2) is concerned
mainly with the solution of equations (3.47) to (3.74), that is with the
second-order effects, once the two fundamentals have been determined.
(The solution given in (2) is valid at large Reynolds number in a mixing-
region flow.) The a and  b  constants of equations (4.1) to (4.4) are assumed
in (2) to be zero, and the disturbances grow exponentially with time. Con-

sequently Benney's analysis is not concerned with the determination of
the relative stability of the two fundamentals, in the sense of equations

(4.3, 4.4). His paper is concerned mainly with the second-orders flows
associated with equations (3.66) to (3.68) and (3.72) to (3.74). The cos 2ily
terms (3.66-3.68) yield a steady flow with a spanwise wave-length of :r/f1;
the cos fly terms (3.72-3.74) yield a flow with spanwise wave-length 2.7/11
and a frequency of but the frequency is zero in Benney's
work because of the simplifying assumption c1 = c,.

In the present writer's opinion it is preferable to include the oscillatory
feature of the cos fiy terms  (e, co) because, although its frequency is
only at most 1/6th or 1/7th of the fundamental frequencies (in the Blasius
case), a slow phase change of the cos fly term occurs relative to the
exp (ia.v)  cos fiy fundamental. Consequently the streamwise positions where
thc cos fly streamwise vorticity (which is proportional to  (D2— ,-;2 ) 4.01

of (3.72)) reinforces the streamwise vorticity of the fundamental will ‘ary
in time in our assumed parallel flow (corresponding to a spatial variation
in experiment). According to Gortler and Witting" streamwise vorticity
will be developed at positions where the streamlines are concave relative

to an observer moving with the wave speed, whereas in experiments of
Klebanoff it occurs at positions where the stream lines are convex. With
the assumption mentioned above, Benney's theorytn agrees qualitatively
with experiment, but the calculations were done on a mixing-region velocity
profile. The position of reinforcement of streamwise vorticity can vary
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in the present theory; in fact, with the frequency difference quoted above,

the position of vorticity reinforcement would move from a "concave"

to "convex" position in only 3 or 4 wave-lengths. This feature seems to

be one requiring further theoretical and experimental investigation.

The spanwise energy flux (per unit area in the xz-plane) which is in-

volved in the flow may be calculated to be Ev, where E = -?,o(u2-1-v2 + w2).

Since u includes the basic mean motion,  Ev  may be approximated to first

order by I>nu2v. It can be shown that

U21' =  Ï.1.2 (1'01 sin fly ,  _u„ulo sin flyvo., sin 2fiyy--) r(
(4.10)

lull i-'11+ Tin sin MA

to first order. The terms proportional to sin 2Ily are proportional also to

B,2,  while those proportional to sin 13yare proportional to  A  h or  :61-B

and therefore oscillate with a frequency ;a‘ci (In experiment this

corresponds to a periodicity in x.) Furthermore the terms proportional

to fi2 represent a spanwise transfer of mean-flow energy, whereas the

terms proportional to  tt  represent a transfer of fluctuation energy. Span-

wise energy transfer has been measured by Klebanoff and Tidstrom,

but the experimental values are of order 102-103 times bigger than the

values for which one might expect the present perturbation theory to be

quantitatively valid.

This fact leads directly to the point that a perturbation theory of the

type described here, as with the work of refs. 1-4, cannot be expected

to describe quantitative features of the flow at any Reynolds number,

wave number and frequency. Perturbation theories for non-linear insta-

bility have two applications: one is to show qualitatively some of the

principal non-linear effects in the instability of actual flows, and it is felt

that this can certainly be done for simple disturbances by analyses of

the type of refs. 1-4, and the present paper, even without detailed numerical

calculation. The second application is to the calculation of quantitative

aspects of the flow at suitable Reynolds number, wave number and fre-

quency, so that comparison with an adequately-controlled experiment

becomes possible at the same Reynolds number, wave number and fre-

quency. It is to be hoped that such a careful experiment can be done,

for example, in plane Poiseuille flow to check the quantitative aspects.

An attempt of this kind is in progress at the N PL under the direction

of Mr. P. Bradshaw. (A difficulty of quantitative comparison in the Blasius

case is the growth of the boundary layer, a feature which has not been

incorporated in the theory.) In connexion with experimental and theo-

retical comparisons, it should be noted that an analysis with fixed fre-

quency, but with the fundamentals growing in the streamwise direction,
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could be done in a similar way to the analysis of this paper, following


Watson(6); in that case the two streamwise wave numbers would be different.

For another treatment of interacting three-dimensional disturbances,

with special reference to a resonance phenomenon, the reader is referred

to a paper by Raetz"6) .

As a final point, it may be worth mentioning that the "critical-layer'

analysis of Lin's Freiburg paper"5) has no application within the frame-

work of the perturbation theories of the various kinds described in refs.

1-4, and in this paper, since it"5) envisages much larger disturbances.

For further discussion of this point, see ref. 3.

The author wishes to express his thanks to J. Watson, C. C. Lin and

L. A. Segel for many valuable discussions on the topic of this paper, and

to D. J. Benney for sending an advance copy of his paper.

This paper was written as part of the research programme of the national

Physical Laboratory, and is published by permission of the director.
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